A RELAÇÃO DA MICROBIOTA INTESTINAL COM A SÍNDROME DOS OVÁRIOS POLICÍSTICOS (SOP)

Autores

  • Marcilene Camilo Heidmann Soccol Centro Universitário UNIFACVEST
  • Márcia Liliane Rippel Silveira Centro Universitário UNIFACVEST
  • Nádia Webber Dimer Centro Universitário UNIFACVEST

Palavras-chave:

Síndrome dos ovários policísticos, Microbiota intestinal, Disbiose intestinal, Probióticos, Prebióticos

Resumo

A síndrome dos ovários policísticos (SOP) é uma doença endócrina generalizada, afetando 6% a 20% das mulheres em idade reprodutiva, em todo o mundo. Estudos têm mostrado a microbiota intestinal como sendo um fator chave no desenvolvimento de SOP, desempenhando um importante papel em muitos transtornos da doença. Este trabalho teve como objetivo realizar uma revisão da literatura buscando compreender o papel da microbiota intestinal na patogênese da SOP e os efeitos da suplementação de probióticos, prebióticos e simbióticos no tratamento da síndrome. Trata-se de um estudo de revisão bibliográfica baseado na análise qualitativa da literatura a partir da seleção de artigos publicados em revistas científicas indexadas em bases de dados como PubMed, SciELO, MEDLINE e LILACS, focada em publicações relacionadas com a síndrome dos ovários policísticos, microbiota intestinal e disbiose intestinal, publicados nos últimos anos. Estudos recentes em humanos e modelos de roedores têm mostrado que a disbiose intestinal pode contribuir para a desenvolvimento de SOP influenciando nas vias dos lipopolissacarídeos (LPS), permeabilidade intestinal, colina, ácidos biliares e no eixo intestino-cérebro. Está bem estabelecido, que a SOP é caracterizada por um estado crônico de inflamação e resistência à insulina. Como parte do tratamento da SOP, sugere-se métodos que visam a modulação da microbiota intestinal, como agentes probióticos, prebióticos e simbióticos, e que esses produtos possam servir como novas opções o no gerenciamento da SOP, a fim de corrigir os sinais e sintomas da doença.

Downloads

Não há dados estatísticos.

Referências

Escobar-Morreale HF. Polycystic ovary syndrome: definition, a etiology, diagnosis and treatment. Nature Reviews Endocrinology. 2018; 14(5):270-284.

Bentley-Lewis R, Seely E, Dunaif A. Ovarian hypertension: polycystic ovary syndrome. Endocrinololy & Metabolism Clinics North America. 2011; 40(2):433-449.

Rotterdam ESHRE/ASRM - Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertility and Sterility. 2004; 81:19-25.

Guo Y, et al. Association between polycystic ovary syndrome and gut microbiota. PloS One. 2016; 11(4)1-15.

Yurtda? G, Akdevelio?lu Y. A new approach to polycystic ovary syndrome: the gut microbiota. Journal of the American College of Nutrition. 2020; 39(4):371-382.

Tremellen KPK. Dysbiosis of gut microbiota (DOGMA) - a novel theory for the development of polycystic ovarian syndrome. Medical Hypotheses. 2012; 79(1):104-112.

Quigley EM. Basic definitions and concepts: organization of the gut microbiome. Gastroenterology Clinics of North America. 2017, 46(1):1-8.

Pascale A, et al. Microbiota and metabolic diseases. Endocrine. 2018; 61(3):357-371.

Ottman N, et al. The function of our microbiota: who is out there and what do they do? Frontiers in Cellular and Infection Microbiology. 2012; 2:1-11.

Altuntas YD, BATMAN A. Microbiota and metabolic syndrome. Türk Kardiyoloji Derne?i Ar?ivi. 2017; 45(3):286-296.

Sherman S, et al. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes. 2018; 9(5):400-421.

Zhang J, et al. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. mSystems. 2019; 4(2):1-16.

Sóter MO, et al. Peripheral blood-derived cytokine gene polymorphisms and metabolic profile in women with polycystic ovary syndrome. Cytokine. 2015; 76(2):227-235.

Delitala AP, et al. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Archives of Gynecology and Obstetrics. 2017; 296(3):405-419.

Yau TT, et al. Polycystic ovary syndrome: a common reproductive syndrome with long-term metabolic consequences. Hong Kong Medical Journal. 2017; 23(6):622-634.

Lindheim L, et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PloS One. 2017; 12(1):1-20.

Liu R, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Frontiers in Microbiology. 2017; 28(8):1-12.

Chu W, et al. Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome. Fertility and Sterility. 2020; 113(6):1286-1298.

Cani PD, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56(7):1761-1772.

Torres PJ, et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. Journal of Clinical Endocrinology & Metabolism. 2018; 103(4):1502-1511.

Egshatyan L, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocrine Connections. 2016; 5(1):1-9.

Mammadova G. Polikistik over sendromlu ve sa_gl?kl? kad?nlarda bag?rsak mikrobiyota üyelerinden Prevotella melaninogenica, Ruminococcus torques ve Clostridium difficile kars?last?r?lmas?. Dissertação - Hacettepe University, Turquia, 2017, 44p.

Ley RE. Gut microbiota in 2015: Prevotella in the gut: choose carefully. Nature Reviews Gastroenterology & Hepatology. 2016; 13(2)69-70.

O’Callaghan A, Van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology. 2016; 7:1-23.

Zeng B, et al. Structural and functional profiles of the gut microbial Community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study. Reserach in Microbiology. 2019; 170(1):43-52.

Insenser M, et al. Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. The Journal of Clinical Endocrinology & Metabolism. 2018; 103(7):2552-2562.

Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334(6052):105-108.

Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Reviews Immunology. 2006; 6(10):772-783.

Peral B, et al. Comment: the methionine 196 arginine polymorphism in exon 6 of the TNF receptor 2 gene (TNFRSF1B) is associated with the polycystic ovary syndrome and hyperandrogenism. The Journal of Clinical Endocrinology & Metabolism. 2002; 87(8):3977-3983.

Hotamisligil GS1, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. The Journal of Clinical Investigation. 1995; 95(5):2409-2415.

Kuzu F. Bag?rsak mikrobiyotas?n?n obezite. Insülin direnci ve diyabetteki rolü. Journal of Biotechnology and Strategic Health Research. 2017; 1:68-80.

Fruzzetti F, et al. Comparison of two insulin sensitizers, metformin and myo-inositol, in women with polycystic ovary syndrome (PCOS). Gynecological Endocrinology. 2016; 33:1-4.

Polak K, et al. New markers of insulin resistance in polycystic ovary syndrome. Journal of Endocrinological Investigation. 2017; 40(1):1-8.

De La Serre CB, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. American Journal of Physiology Gastrointestinal and Liver Physiology. 2010; 299(2):440-448.

Serino M, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2011; 61(4):543-553.

Bouhnik Y, et al. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallelgroup, dose-response relation study. The American Journal Clinical Nutrition. 2004; 80(6):1658-1664.

Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017; 151(4):363-481.

Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: etiology, treatment, and genetics. Metabolism Clinical and Experimental. 2019; 92:108-120.

Belani M, et al. Differential insulin and steroidogenic signaling in insulin resistant and non- insulin resistant human luteinized granulosa cells - a study in PCOS patients. The Journal of Steroid Biochemistry and Molecular Biology. 2018; 178(1):283-292.

Glintborg D, et al. Comparison of regional fat mass measurement by whole body DXA scans and anthropometric measures to predict insulin resistance in women with polycystic ovary syndrome and controls. Acta Obstetricia et Gynecologica Scandinavica. 2016; 95(11):1235-1243.

Cara JF, Rosenfield RL. Insulin-like growth factor I and insulin potentiate luteinizing hormone-induced androgen synthesis by rat ovarian thecal-interstitial cells. Endocrinology. 1988; 123(2):733-739.

Nestler JE, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism. 1991; 72(1):83-89.

Evliyaoglu O. Polycystic ovary syndrome and hirsutism. Turk Pediatri Arsivi. 2011; 2(46):8-13.

Bergh C, et al. Regulation of androgen production in cultured human thecal cells by insulin-like growth factor I and insulin. Fertility and Sterility. 1993; 59(2):323-331.

Franks S, Hardy K. Aberrant follicle development and anovulation in polycystic ovary syndrome. Annales d’Endocrinologie. 2010; 71(3):228-230.

Pellock SJ, Redinbo MR. Glucuronides in the gut: sugar-driven symbioses between microbe and host. The Journal of Biological Chemistry. 2017; 292(21):8569-8576.

Rizk MG, Thackray VG. Intersection of polycystic ovary syndrome and the gut microbiome. Journal of the Endocrine Society. 2021; 5(2):1-16.

Thackray VG. Sex, microbes, and polycystic ovary syndrome. Trends in Endocrinology Metabolism. 2019; 30(1):54-65.

Ali AT. Polycystic ovary syndrome and metabolic syndrome. Ceska Gynekologie. 2015; 80(4):279-289.

Zhang D, et al. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Europan Journal of Endocrinology. 2015; 172(1):29-36.

Zhao X, et al. Exploration of the relationship retween gut microbiota and polycystic ovary syndrome (PCOS): A review. Geburtshilfe Frauenheilkd. 2020; 80(2):161-171.

Chen J, et al. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. British Journal of Nutriton. 2012; 107(10):1429-1434.

Koeth RA, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine. 2013; 19:576-585.

Huang J. PCOS without hyperandrogenism is associated with higher plasma Trimethylamine N-oxide levels. BMC Endocrine Disorders. 2020; 20(3):1-9.

Sayin SI, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metabolism. 2013; 17(2):225-235.

Cullberg G, et al. Lipid metabolic studies in women with a polycystic ovary syndrome during treatment with a lowdose desogestrel-ethinylestradiol combination. Acta Obstetricia et Gynecologica Scandinavica. 1985; 64(3):203-207.

Qi X, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nature Medicine. 2019; 25(8):1225-1233.

Fujisaka S, et al. Antibiotic effects on gut microbiota and metabolism are host dependent. The Journal of Clinical Investigation. 2016; 126(12):4430-4443.

Katherine GC, et al. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet- induced obesity. Nutrition Research Reviews. 2016; 29:234-248.

Lach G, et al. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics. 2017; 15:p.1-24.

Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397-414.

Chaudhari NK, Nampoothiri LP. Neurotransmitter alteration in a testosterone propionate- induced polycystic ovarian syndrome rat model. Hormone Molecular Biology and Clinical Investigation. 2017; 29(2):71-77.

Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489(7415):242-249.

Riaz T, et al. Quantitative proteomics of gut-derived Th1 and Th1/Th17 clones reveal the presence of CD28+ NKG2D- Th1 cytotoxic CD4+ T cells. Molecular & Cellular Proteomics. 2016; 15(3):1007-1016.

Lang Q, et al. Differential expression profile of immunological cytokines in local ovary in patients with polycystic ovarian syndrome: analysis by flow cytometry. Europan Journal of Obstetrics, Gynecology, and Reproductive Biology. 2016; 197:136-141.

Kim CH, Jeongho P, Myunghoo K. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Network. 2014; 14:277-282.

El Hayek S, et al. Polycystic ovarian syndrome: an updated overview. Frontiers in Physiology. 2016; 7(5):1-15.

Karamali M, et al. Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Archives of Iran Medicine. 2018; 21(1):1-7.

Shoaei T, Heidari-Beni M, Tehrani HG. Effects of probiotic supplementation on pancreatic b-cell function and c-reactive protein in women with polycystic ovary syndrome: A randomized double-blind placebo-controlled clinical trial. International Journal Preventive Medicine. 2015; 6(1):1-6.

Rashad NM, et al. Effects of probiotics supplementation on macrophage migration inhibitory fator and clinical laboratory feature of polycystic ovary syndrome. Journal of Functional Foods. 2017; 36:317-324.

Ghanei N, et al. The probiotic supplementation reduced inflammation in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Journal of Functional Foods. 2018; 42:306-311.

Heshmati J, et al. The effects of probiotics or synbiotics in women with polycystic ovarian syndrome: a systematic review and meta-analysis of randomized clinical trials. Probiotics and Antimicrobial Proteins. 2018; 11(4):1236-1247.

Guarner F, et al. World gastroenterology organisation global guidelines: probiotics and prebiotics. Journal of Clinical Gastroenterology. 2012; 46(6):468-481.

Altun HK, Yildiz E. A. Prebiyotikler ve probiyotiklerin diyabet ile iliskisi. Turkish Journal of Life Sciences. 2017; 1(2):149-156.

Prakash S, et al. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics: Targets and Therapy. 2011; 5:71-86.

Shamasbi SGl, et al. The effect of resistant dextrin as a prebiotic on metabolic parameters and androgen level in women with polycystic ovarian syndrome: A randomized, triple-blind, controlled, clinical trial. European Journal of Clinical Nutrition. 2018; 58(2):629-640.

Zhang Q, et al. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ. 2018; 6:p.1-24.

Xue J, et al. Inulin and metformin ameliorate polycystic ovary syndrome via anti-inflammation and modulating gut microbiota in mice. Endocrine Journal. 2019; 66(10):859-870.

Esmaeilinezhad Z, et al. Effect of synbiotic pomegranate juice on glycemic, sex hormone profile and anthropometric indices in PCOS: a randomized, triple blind, controlled trial. Nutrition, Metabolism Cardiovascular Diseases. 2019; 29(2):201-208.

Samimi M, et al. The Effects of synbiotic supplementation on metabolic status in women with polycystic ovary syndrome: a randomized double-blind clinical trial. Probiotics Antimicrob Proteins. 2018; 12:1-7.

Tolhurst G, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the g-protein-coupled receptor FFAR2. Diabetes. 2011; 61(2):364-371.

Schwiertz A, et al. Microbiota and scfa in lean and overweight healthy subjects. Obesity. 2010; 8(1):190-195.

Downloads

Publicado

2022-04-20

Como Citar

CAMILO HEIDMANN SOCCOL, M.; RIPPEL SILVEIRA, M. L. .; WEBBER DIMER, N. . A RELAÇÃO DA MICROBIOTA INTESTINAL COM A SÍNDROME DOS OVÁRIOS POLICÍSTICOS (SOP). Scientia Generalis, [S. l.], v. 3, n. 1, p. 235–249, 2022. Disponível em: http://scientiageneralis.com.br/index.php/SG/article/view/406. Acesso em: 22 maio. 2022.

Edição

Seção

Revisão de literatura

ARK

PURL